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Theory of Dispersion in Microstrip
of Arbitrary Width
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Abstract—An analytic theory for the dispersion of the fundamental
mode on wide open microstrip is presented. Only a single basis function Is
needed to accurately represent each of the change and current distribu-
tions on the strip, thus allowing more efficient determination of the

propagation constant as compared to moment-method solutions requiring a
larger number of basis functions. The results obtained blend smoothly into
resuits of high-frequency (Wiener—Hopf) theories, and still retain the
appealing physical interpretation in terms of capitance and inductance of
the narrow strip theory previously obtained by the authors.

I. INTRODUCTION

n PREVIOUS work, the authors [1] have presented an

analytic theory of dispersion for narrow open micro-
strip (that is, for which the strip is small compared to
substrate thickness) in terms of a dispersive series induc-
tance and capitance, generalizing the classical expression
for the propagation constant from transmission line the-
ory which involves the static values of these parameters.
Because an accurate form for the current and charge
distributions (which are the same for this case) was availa-
ble, it was possible to avoid more cumbersome moment
function expansions, and to obtain a relatively simple
dispersion relation possessing the clear physical interpre-
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tation referred to above. In reviewing numerical results
available in the literature for wider microstrip, whose strip
width is comparable to substrate thickness, the authors
found significant discrepancies between workers who used
different methods to attack the problem [2]. The best
methods seem to be those which can represent the current
and charge distributions (especially the edge singularities)
accurately with a minimum number of basis functions.

The goal of the present study is to formulate an analytic
theory of dispersion similar to [1] which will be valid for
wider strips, yet still retain both analytical and computa-
tional straightforwardness as well as clear physical insight
into the problem. Crucial to this is the recognition that the
charge and current distributions now differ significantly
from those in the narrow-strip limit, and also differ to
some extent from each other. Thus an important part of
the discussion depends on having accurate and reasonably
simple functional descriptions of these distributions. The
results will be examined to see what degree the difference
of these distributions from the narrow-strip case and from
each other affects the accuracy of the computed disper-
sion curves.

Of published numerical work, references [3]-[5] offer
results that we might classify as applying to “wide” micro-
strip, and these will be used as the basis for comparison.
Also, although we shall consider strips wide compared to
the substrate, the strips are not allowed to become electri-
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cally large (ky/=<1), because in this range of parameters,
the physical mechanisms are basically different. These are
best treated by the methods of [6]-[9] (which use adapta-
tions of the more appropriate Wiener—Hopf technique).

II. DERIVATION OF THE DISPERSION RELATION
USING STATIC CHARGE AND CURRENT
DISTRIBUTIONS

We shall proceed from the formulation of [1], making
some minor changes in notation. For an assumed propa-
gation factor of exp(iwz—ikyox), where « is the (yet
unknown) propagation constant of the fundamental
mode, normalized to the wavenumber &, of free space,
and x is distance along the length of the strip (see Fig. 1),
we have

!
f_lGe(y-—y’)p(y’)dy’=cosh Va?—1 kyy, |yl
0y

Here p(y) is the charge distribution on the strip (—-/<y <
/) which is considered to be vanishingly thin, while

., ® (utanhu, T)cosk\y dA
Ge(y)—ZL quo+utanhu, T uy

. 2
o @
The quantity 7=kt is the substrate thickness normalized
to the free space wavenumber, and

u, (N2 + o~ 1e) % ug=(A2+a2—1)"%  Re(ug)>0

()
where ¢, and p, are, respectively, the relative permittivity
and permeability of the substrate. It might be mentioned
that the quantity o is usually denoted by ey or ¢, , the
effective dielectric constant of this mode.

Once the solution of (1) is known as a function of a, the
longitudinal current density J,(») is then found from

f_I,Gm(y VW)Y
= aco[cosh Va?—1 kyy+ fle(y =)y | (4)

1/2

where ¢, = (pgeq)” /“ is the velocity of light in free space,

while
_ o cosk Ay
() =21 ’fo pue+ u,cothu, T aA ©)
M(»)=2(pe—1)
coskhy dA

[+
' fo (e o+ u,tanhu, TY( puy+ u,cothu, T)u, ©)
The solutions p(y) and J, () thus obtained, both func-
tions of a, are then inserted into

S [@.09)—cool) 1y =0 ()

(which follows from conservation of charge and the re-
quirement that the transverse current density vanish at the
edges of the strip) and (7) then becomes a characteristic
equation for determining «. So far, these equations are
exact.
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Fig. 1. Open microstrip.

Let us examine the static limit of these equations. We

find that coshVa?—1 k,y—>1, and upon changing vari-
ables from kA—A:

% tanhAt d\
() = e =
G,—>GO(y)=2 fo Ty VAL (8)
®©  CcOosA dA
Goms G () =21, | ———-Mcong 9)

and M0 because of coth u,T in its denominator, so that
(1) and (4) decouple into

[ 626 =yenar=1, i<t (0)

and
!
[ 69010 =acy, i<t ()

Now, the equations which determine the static charge and
current distributions on this structure are (see, e.g., [12])

1 ! , N / ~
PP f_IG,‘.?’(y OOy =V f_lp“’)(y)ab/— G,V (12)

1 l 4 4 [ l —
30 ) BRI =L [ IO(=1
(13)

where p@(y) and JO(y) are the static distributions, V'
and I are, respectively, the voltage and total current on
the strip, and C, is the distributed capacitance (normal-
ized to g) and L, the distributed inductance (normalized
to ) per unit length of the line. From (7) and (10)—(13)
we can obtain the well-known expression

=L, (14)

as the static value of €., Many computations of L  and C,
are available in the literature; the authors have found the
expressions derived in [10] for the case p, =1 to be particu-
larly convenient. These are accurate to better than 0.75
percent for all values of //¢, and are quoted in Appendix
A.

The static distributions p®(») and J®(y) can be ex-
pected to be reasonably accurate for nonzero frequencies
as well, if neither the strip width nor the substrate thick-
ness becomes electrically large (k,/S1, kgtS1). For defi-
niteness, let us denote by p@(») and J¥(») the solutions
of (12) and (13) with C,V'=1 and /=1 from here on. We
assume that dispersion can be accounted for by introduc-
ing amplitude factors py(a) and Jy(a):

p(N)=p(@pP(y) T (P)=Jo()IP(»). (15)
The amplitude factors are to be found by substituting (15)

into (1) and (4), multiplying (1) by p©@(y) and (4) by
JO(y) and integrating from —/ to /, and finally making

2 _
Q= €Sef!
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use of (7). These steps are carried out in Appendix B, and
result in

a’=L(a)C(a) (16)
where L(a) and C(«) are a (normalized) dispersive induc-
tance and a (normalized) dispersive capacitance per unit
length of the line, respectively. Each consists of a “series”
combination of the static part and a dispersive part:

L(e)=L,+ L(a) a7)
S
@~ W (18)

where L (a) and 1/ C,a are given by (B.22) and (B.23).

It will be noted that the procedure leading to (16)—(18)
is in essence a moment method, where only a single basis
function is used to approximate each of the charge and
current distributions. The anticipated success of our ap-
proach lies in the fact that p©@(y) and J©(y) provide
greater accuracy than any of the single basis functions
such as are used in other moment-method approaches
(e.g., [4] and [S]). We can therefore compute the dispersion
equation more efficiently because fewer basis functions
are needed.

We might also have chosen to follow one of the varia-
tional approaches available in the literature. Rather sim-
ple stationary formulas for L, and C, can be found
[11]-[14], but for nonzero frequency, the stationary func-
tionals are more complicated, as can be seen in [2],
[14]-[16). Some simplification occurs if transverse currents
on the strips are assumed to be negligible. A dispersion
relation, also in the form of (16)-(18), can be obtained
from the variational expression given in {16], although
different expressions for L/a) and 1/C,(a) are obtained.
However, it can be shown that these two equations differ
only in terms which would be absent if transverse currents
had been neglected. Numerical results from both methods
were compared using //¢=2.34, k,t=0.107, and €¢,=9.9
and found to give ¢, = a? as 8.339 and 8.337, respectively.
This might be expected, since the “moment method”
leading to (16)~(18) can also be shown to possess a
variational property [18]. Omitting the contribution due to
transverse currents (i.e., the difference in functional form
between p@(y) and JO(»)) also yielded 8.337, apparently
indicating that this difference has little effect on results.
However, as may be concluded from the comparisons in
[2], the difference between p@(y) and JO(y) and the
corresponding expressions for the narrow strip can be
quite important, especially for //¢> 1.

III. NumEericaL RESULTS AND DiISCUSSION

A. Narrow Strips

It can be shown, using the limiting form of the
Legendre functions for argument equal to unity [19] and
the limiting forms for the elliptic integrals as k, and
k,—0, that the dispersion equations derived here pass
over into those obtained for narrow strips [1], but the
present theory is valid for strips of arbitrary width. Re-
sults have been computed for narrow strips and compare
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Fig. 2. Effective dielectric constant ¢, =a® for open microstrip: 1=
0.64 mm, = 1.5 mm, ¢ =9.9 as computed by Jansen [5] and by present
method.
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rett o|
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Fig. 3. Effective dielectric constant ¢, .n=°‘2 for open microstrip: t=
1.27 mm, /=1.905 mm, ¢ =9.7 as computed by Kowalski and Pregla
[3] and by the present method.

quite well with those of [1], although of course the latter
does not require evaluations of Legendre functions and is
altogether more appropriate to the task.

B. Wider Strips

Of the results available for wider strips, those of [5]
seem to have the greatest likelihood of accuracy. As
argued in [2], the moment method used in [5] used a set of
basis functions to describe the currents which possess the
proper singular behavior at the edges of the strip, and a
sufficient number of these is employed to assure an ac-
curate result. Fig. 2 gives a comparison between the
results for the widest strip from [3] and from the present
method (the various dispersion relations mentioned at the
end of the previous section gave indistinguishable results
when displayed graphically—this was true for all results
presented here). The agreement is nearly exact: the dis-
crepancy is at least as much as the error involved in
reading data from the graph in [5]. Kowalski and Pregla
[3] have used a variational approach, but use only the
current distribution appropriate to a narrow strip as a trial
function. While, as seen in [2], this gives good results even
for strips as wide as the substrate thickness, a comparison
of their results for a wider strip with those of our method
(Fig. 3) shows that the narrow strip current distribution is
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Fig. 4. Effective dielectric constant e ,=a2 for open microstrip: =

1.27 mm, ¢, =10.2; as computed by Sorobets er al.[4] and the pres-
ent method.
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Fig. 5. Effective dielectric consiant ¢, =a? for open microstrip: =
1.27 mm, ¢ =10; as computed by Nefedov et al. [9] and the present
method.

no longer adequate, although the same general trend for
the effective dielectric constant is predicted.

In [4], results for very wide strips are computed by what
is also (in essence) a moment-method technique, but using
a constant distribution of the current on the strip, Com-
paring results with those of our method in Fig. 4, we see
that for //1=2, their method seems to predict a reason-
able value for a? in the static limit, but dispersion effects
are considerably underestimated. For a very wide strip
with //¢#=35, no consistent pattern of error seems to be
present. A possible explanation of this is that in both
methods, Sommerfeld integrals like (B.24)—(B.26) must be
evaluated with rapidly oscillating integrands (the conical
functions oscillate more rapidly with + as the argument is
increased); a similar rapid oscillation occurs in [4] due to
trigonometric functions. In support of our result for the
static limit, we can offer agreement with the graphically
displayed results of Wheeler [20] and many others who
have studied this case, at least to within the readability of
the graphs used for comparison.

Displayed in Fig. 5 are the results of Nefedov et al. [9],
who apply a Wiener—Hopf technique appropriate to very
wide strips and rather high frequencies. It can be seen that
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in both instances good agreement with our result is ob-
tained at frequencies for which Ve, kol =0.5. The agree-
ment with [9] is particularly gratifying since it indicates
that the entire range of frequencies can be covered with
the present method (for lower frequency) and the
Wiener-Hopf approach (for higher frequency), with a
considerable region of overlap where both are accurate.

We should note that the current and charge distribu-
tions themselves, not just the differences between them,
influence the character of the dispersion curves. As seen
in [1], for example, the dispersion of a narrow strip (for
which these distributions have the same form) is actually
more pronounced, in general than that of the wide strips
presented here.

1V. ConcLusioNn

It has been found that accurate results for the disper-
sion of open microstrip of arbitrary width can be obtained
using only a single basis function each for the charge and
current distributions on the strip. Computing times can be
considerably shortened compared to moment-method ap-
proaches requiring larger numbers of basis functions to
represent these quantities. A smooth transition has been
observed between this, low-frequency theory, and the
higher frequency (Wiener—Hopf) approaches existing in
the literature.

APPENDIX A

In this Appendix, we quote without derivation the
closed-form expressions for L, and C, obtained in [10}:

1 1 K(k}) 2 4]?
—_ <~ Ini 1+ Al
G 2er D) Kk) amarr | T | D
K(k,) ? 472
L= m In| 1+ A2
5 4K(k,) 4xI? amtz} (A2)

Here K(k) is the complete elliptic integral of the first kind,
the moduli &k, and k,, are defined in (B.21), while the
constants a, and a,, are given by

_ (e+1)/¢ ‘
T T 0(-8) +In[ 7e,/2(e,+1)] (A3)
a,= ﬁ ~8.2794 (Ad)
where
S=(e—1)/(e+1)
and
0(x)= él xm1n(ﬁ;—1). (A.5)

APPENDIX B

In this Appendix, we carry out the steps leading to the
dispersion relation (16). Substituting (15) into (1) and (4),
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we have
1
Po(@) f_lGe(y =pO(y) ' =coshVaP~1 kyy

(B.1)
1o@) [ Guly =y WO

= aco[cosh Va*—1 kyy+pya)

S MO =000 | B2)

Multiplying (B.1) by p©@(y), and (B.2) by JO(y), and
integrating, we obtain

o [ [ 6=y d
= f_llp“”(y)coshm koydy (B.3)
W@ [ [ Gy =y OO0
=aco[ S 7900 Vad =T koyab + pof)

J. I f ' M(y ‘y')P("’(y')J?)(y)a)»'ay}. (B4)

Now, by writing G,=GQ®+AG, and G,=GP+AG,,
where the static kernels G(o) and G(o) are given in (8) and
(9), we can make use of (12), (13) to simplify part of the
left sides of (B.3) and (B.4), recalling that we have set C,V’
and 7 equal to unity in those equations:

w@|Z+ [ [ 86— )8 s
= f_ Ip(o)(y)coshm koydy (B.S)

s@ {2+ [ [' 46,(-I100O D )
- aco[f_llJ,(,o)(y)cosh Va*—1 kyydy

+on(@ [ [ MO =000 100N |

(B.6)
These equations determine py(a) and Jy(a) in terms of the
static strip parameters and some integral terms, of which
the latter determine the frequency dependence. Since (7)
and (15) give us

aJo(a) = copy(a)

we obtain an equation to solve for a.

The integrals in (B.5) and (B.6) can be simplified by

introducing the Fourier transform pair (for functions
which vanish for |y|>1)

J0)= [ exp(= ko) NN

(B.7)

) (B.3)
=22 [ ik )a
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For even functions, the exponentials in (B.8) can be
replaced by cos(kg\y). Since the static distributions are
even, we get

flp(")(y)cosh\/az—l koydy=pN—iVa*-1)
-1

(B.9)
[ IO Ver =1 kyyady =JO(=iVaP 1)
=1
(B.10)

while the double integrals in (B.5) and (B.6) can be
reduced by using the Fourier integral representations for
AG,, AG,,, and M (cf. (2), (5), (6), (8) and (9)):

I pt 1l o , ' g e 32
30 )| A6.0=r 0O & =62()

_4x u tanhu, T _ tanh AT
N k2 fo ug(e.ug+utanbu, T)  A(e,+tanhAT)
. [~(0)()‘)]2d)\ (B.11)

52 [ [ 86,05 =»100NI00) by = =GP()= 3

0

. o0 1 _ 1 7(0) ZdA
j(; [ p g+ u,cothu, T A(p,+cothAT) ] [72M)]

(B.12)
% f_l ,f _I M (=W )NWO () dy =MP(a)

[P ][TOM) ]ar
f (e u+u,tanhu, T)( puo+ u,cothu, T)u,

Inserting (B.11)-(B.13) into (B.5)-(B.7), and taking (B.9)
and (B.10) into account yields the eigenvalue equation for
a:

(B.13)

ol 1 Lo pO(=iVal-1)
+ G (a)+ —
C JO(=iVa?-1)

pO(—=iVa*-1)
JO(-iVa?-1)
Although no exact, closed-form expressions for p©@(y)

and JO(y) exist, the following simple expressions for the
case p,. =1 have been obtained in [10]:

M%(a)

=[L,+GP(a)]

(B.14)

pO(y)=~ const » i<t
Veosh?(l /2h) — cosh®(my / 2h)
(B.15)
JO(y)= o . st
\/coshz('rrl /4t)—cosh?(my /41)
(B.16)

Here h=(¢.+1)t/¢,, which reduces approximately to ¢
when €>>1. Expressions (B.15) and (B.16) have been
found to be accurate to within a few percent for most
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parameter values, and have never been observed to de-
viate more than about 10 percent for any situation. These
forms are particularly suited to our present purpose, be-
cause their Fourier transform can be expressed in terms of
a particular form of the Legendre function known as a
conical function [19, p. 14]:

! cosk\y dy

7l 1
P_\, i’r(COSh_)= 2h
/2+ hJ 2h f_ ! \/coshz(wl /2h)—cosh*(ny /2h)
(B.17)

where 7= MAkyh /7. Efficient numerical procedures exist for
computing this function: a uniform asymptotic expansion
for large 7[19, p. 23], [21, p. 466], [22); and for small 7
either a power series whose coefficients are tabulated as
functions of the argument z = cosh(«// k) [19] or a method
similar to the arithmetic-geometric mean algorithm for
evaluating elliptic integrals [23].

By (12) and (13) (since C,V and I are both unity), we
see that p©O0)=JO0)=k,/27, which suffices to de-
termine the constants in (B.15) and (B.16), so that by
B.17):

ky P_ /344, (coshal/h)

5O\ =

o) 2m P_, y(coshal/h) (B.18)
. ky, P_ i (coshal/2¢
7o) = fo Loiyzeim(Coshl/21) (B.19)

27 P_,5(coshal/2t)

where 7,=MAkoh/m=AT(e,+1)/me, and 1, =2AT/7w. By
[19] it is possible to express P_,,, in terms of elliptic
integrals [17]:

al 2,
P_ 1/z(cosh—) == k. K(k,)

h
al 2,
P_ 1/2(cosh-2—t) == knK(k,) (B.20)
where the moduli are given by
k,=tanh 7 k=(1-k2)"? (B21)

2h

km=tanh§§ K,=(1-k2)",

Inserting (B.18) and (B.19) into (B.14), we arrive at disper-
sion relation (16)~(18), wherein

1

=62(a)
Cyla)
P_, (coshwl/2t) P, _,,(coshal/2¢) MO(a)
P_, y(coshml/h) P, _, (coshwl/2t)
(B.22)
P_, )(coshwl/2t) P, _,,5(coshal/h)
L(a)=1,| Zoigeoshal/20) P, -y/lcoshal/

-1
°| P_y(coshml/h) P, _,(coshal/2f)

P_,)(coshml/2t) P, _,,(coshal/h) GO
P_,/)(coshal/h) P, _, (coshwl/2z) ~" (@)

(B23)
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where

v,=kohVa*—1 /mand v, =2kgtVa®—1 /7

and the Sommerfeld integrals are

GO )_lfw w,tanhu, T __ tanhAT
e T o | u{euy+utanhu, T) A(e,+tanhAT)

2

P_ip4i(coshal/h
1/ain B 1 (B.24)

P_, (coshnl/h)

1 1 1
(2 = — —
Grn'(2) T j; [ pug+u,cothu, T A p+cothAT) ]

P_y 34 (coshml/2t)
P_, /y(coshnl/2t)

2
] d\ (B.25)

e—1
MP(a)= “r#_

b 1
. ./(; [ (e, ug+ u,tanhu, T)( p,uy+ u,cothu, T)u, }
P_y pvpp(coshal/h) | [ P_y 5y, (coshal/2t) }

P_, 5(coshwl/h) P_, 5(coshwi/2¢)

(B.26)

Equations (B.24)-(B.26) differ from the corresponding
functions in [1] only by an unimportant constant and the
presence of p@Q\) and JOQ) in the integrals.
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An Expansion for the Fringing Capacitance
HENRY J. RIBLET, FELLOW, IEEE

Abstract---The first twelve terms in an expansion of the “approximate
fringing capacitance” in powers of exp (—us/b) are given explicitly as
functions of 7/b. Comparison with exact values shows agreement within
0.06 percent for s/b>0.2 and ¢/5 < 0.5. In the extreme case considered,
5/b=0.1 and 1/b=0.5, the error is less than 2.3 percent.

INTRODUCTION

The “approximate fringing capacitance” C;, as defined by
Cohn [1] and Getsinger [2] is useful in a number of ways in the
approximation of the capacitance of certain rectangular coaxial
structures. Explicit formulas for it have been given by Cockroft
[3], Getsinger [2], and Riblet [4]. These formulas express C in
terms of two independent real parameters a and k. The normal-
ized geometric parameters, /b and s/b of Fig. 1 are also given
in terms of these parameters, but, before C/ can be found for a
given geometry, these equations must be inverted in some way
and a and k determined for the given values of 1/b and 5/ b.

Heretofore this determination has required some form of
graphical or numerical trial and error process. Recently, Riblet
[S], however, has shown how for large values of s/b, these
equations can be inverted. In this note these values for @ and &
are substituted directly in the formula for C; and an expansion
obtained for Cf in powers of exp(—ms/b), whose coefficients
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Fig. 1.

Fringing capacitance cross section.

are given functions of #/b, which has useful accuracy for s/b as
small as 0.1.

THE PROBLEM

It is not difficult, following Bowman [6] to express the quanti-
ties b, s, and ¢, of Fig. 1, except for a scale factor, in terms of two
independent real parameters a and k, where k is the modulus of
the Jacobi elliptic functions involved. It is no restriction to
assume that 0<k <1 and 0<a < K. Then

b=2K{——s“f::“ ~Z@) -+ %)
s=2K{ _sn:::a - Z(a)} @
t=2K'{—s£g£&I-l—g—Z(a)}—fkg. 10

The approximate odd-mode fringing capacitance, Gy, for this
geometry is given in terms of the same parameters a and k by
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