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Theory of Dispersion in Microstrip
of Arbitrary Width

EDWARD F. KUESTER, h@MBE~ IEEE AND DAVID C. CHANG, SEMOR MEMEER, lEEE

A/mmet-Ao lUMfytiCtheory for the di!iperdon Of the fmldalnelltai

medemswide apenmicraa@ iaprwented. Osdyadngle badsfmsctionis
needed to accurately represent each of the dsange and current dktrfbu-

tiom on the strip, thus aflowing more effident determination of the

pmpagath conataot as compared to mmnent-methnd solutions rs+ring a
larger number of basis functions. llse reasdta obtdned blend smoothly into

results of higfs-frqueney (Wiener-Hopf) themta% and SW retdn tbe
appealing phydcaf interpretation in terms of cqsitance and fndwtaoce of

thenarraw etliptheory previaudy obtdnedbytbe authorR

I. INTRODUCTION

I n PREVIOUS work, the authors [1] have presented an

analytic theory of dispersion for narrow open rnicro-

strip (that is, for which the strip is small compared to

substrate thickness) in terms of a dispersive series induc-

tance and capitance, generalizing the classical expression

for the propagation constant from transmission line the-

ory which involves the static values of these parameters.

Because an accurate form for the current and charge

distributions (which are the same for this case) was availa-

ble, it was possible to avoid more cumbersome moment

function expansions, and to obtain a relatively simple

dispersion relation possessing the clear physical interpre-

Manuscript received June 11, 1979; revised Octolxm 17, 1979. This
pmjeet is supported in part by the Office of Nwcf Research under
Contract NO014-76-C-0318 and in part by NSF Grant ENG78-09029.

The authors are with Electromagnetic Laboratory, Department of
Electronical Engineering, University of Colorado, Boulder, CO 80309.

tation referred to above. In reviewing numerical results

available in the literature for wider microstrip, whose strip

width is comparable to substrate thickness, the authors

found significant discrepancies between workers who used

different methods to attack the problem [2]. The best

methods seem to be those which can represent the current

and charge distributions (especially the edge singularities)

accurately with a minimum number of basis functions.

The goal of the present study is to formulate an analytic

theory of dispersion similar to [1] which will be valid for

wider strips, yet still retain both analytical and computa-

tional straightforwardnes8 as well as clear physical insight

into the problem. Crucial to this is the recognition that the

charge and current distributions now differ significantly

from those in the narrow-strip limit, and also differ to

some extent from each other. Thus an important part of

the discussion depends on having accurate and reasonably

simple functional descriptions of these distributions. The

results will be examined to see what degree the difference

of these distributions from the narrow-strip case and from

each other affects the accuracy of the computed disper-

sion curves.

Of published numerical work, references [3]–[5] offer

results that we might classify as applying to “wide” micro-

strip, and these will be used as the basis for comparison.

Also, although we shall consider strips wide compared to

the substrate, the strips are not allowed to become electri-
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cal~ large (kols 1), because in this range of parameters,
z

the physical mechanisms are basically different. These are

best treated by the methods of [6]-[9] (which use adapta-

tions of the more appropriate Wiener–Hopf technique).
PERF COND.
GROUND PLANE

11, DERIVATION OF THE DISPERSION RELATION

USING STATIC CHARGE ANII CURRENT

DISTRIBUTIONS

We shall proceed from the formulation of [1], making

some minor changes in notation. For an assumed propa-

gation factor of exp(i~t – ikoax), where a is the (yet

unknown) propagation constant of the fundamental

mode, normalized to the wavenumber kO of free space,

and x is distance along the length of the strip (see Fig. 1),

we have

~’Ge(~-~’),(~’)@’=cosh-~o~> IYIKZ.–[
(1)

Here p(y) is the charge distribution on the strip (– 1< y <

1) which is considered to be vanishingly thin, while

The quantity T= kot is the substrate thickness normalized

to the free space wavenumber, and

Unolz+ a2– p#y2, 24. = (AZ+ /- 1)”2, Re(uO) >0

(3)

where q and w are, respectively, the relative permittivity

and permeability of the substrate. It might be mentioned

that the quantity a2 is usually denoted by E.ff or qdf, the

effective dielectric constant of this mode.

Once the solution of (1) is known as a function of a, the

longitudinal current density .lX(y) is then found from

~’%(Y-Y’N-AY’MY’
-I

[ 1=(.lCocosh~ koy + ~;{~(y ‘~ ’)~(y’)dj’ (q)

– 1/2 is the velocity of light in free sPace~
where CO= ( ~eO)

while

/

w

GAY)=%
COSkJ..y

dA (5)
o I%UO + Uncoth % T

MY) =2(%% – ~)

“J
m COS k&y dA

. (6)
o (C,ZJo + u.tanh u. T)( I.L,Uo+ u.coth u. T)uO

The solutions p(y) and .lX(y) thus obtained, both func-

tions of a, are then inserted into

(7)

(which follows from conservation of charge and the re-

quirement that the transverse current density vanish at the

edges of the strip) and (7) then becomes a characteristic

equation for determining a. So far, these equations are

exact.

Fig. 1. Open microstrip.

Let us examine the static limit of these equations. We

find that cosh~~ k. y+ 1, and upon changing vari-

ables from k~-ii:

and ikf+O because of coth u. T in its denominator, so that

(1) and (4) decouple into

~’ @O)(Y-Y’)P(Y’)@’=L lYl~l (lo)
–I

and

~{ G#)(Y-Y’)J.(Y’)@’= aCO, lYl~~- (11)
–I

Now, the equations which determine the static charge and

current distributions on this structure are (see, e.g., [12])

+J-:@?(Y-Y’)P’”KY’)@’= qzP’o’(Y)@=v w
–1

&J:p(Y-Y’)J$o)(Yf)@’= Ls~J’.E”YY)6-$=I-[
(13)

where p(”)(y) and J:”)(y) are the static distributions, V

and 1 are, respectively, the voltage and total current on

the strip, and C, is the distributed capacitance (normal-

ized to ~) and L. the distributed inductance (normalized

to ~) per unit length of the line. From (7) and (10)-(13)

we can obtain the well-known expression

,=,,= L.c.a~=e (14)

as the static value of Cefr Many computations of L, and C.

are available in the literature; the authors have found the

expressions derived in [10] for the case A = 1 to be pmticu-

larly convenient. These are accurate to better than 0.’75

percent for all values of 1/t, and are quoted in Appendix

A.
The static distributions p(o)(y) and Ji”)(y) can be ex-

pected to be reasonably accurate for nonzero frequencies

as well, if neither the strip width nor the substrate thick-

ness becomes electrically large (kol~ 1, kot ~ 1). For defi-

niteness, let us denote by p(”)(y) and J_j”)(y) the solutions

of (12) and (13) with C~P’= 1 and 1= 1 from here on, We

assume that dispersion can be accounted for by introduc-

ing amplitude factors po(a) and JO(a):

~(y) ~~o(a)~(”)(y) .lX(y)NJo(a)JjO) (y). (15)

The amplitude factors are to be found by substituting (15)

into (1) and (4), multiplying (1) by p(”l( y) and (4) by

J(”)(y) and integrating from – 1 to 1, and finally makingx
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use of (7). These steps are carried out in Appendix B, and

I

–-–- JANSEN

result in
— PRESENT METHOO

9

(X2= L(a) c(a) (16)

where L(a) and C(a) are a (normalized) dispersive induc- 8 – ---

tance and a (normalized) dispersive capacitance per unit ●reff

length of the line, respectively. Each consists of a “series” 7 –

combination of the static part and a dispersive part:

L(a) = L, + LJa) (17)

11 1

c(a) = q + cd(a)
(18)

where Ld(a) and 1/ Cda are given by (B.22) and (B.23).

It will be noted that the procedure leading to (16)-(18)

is in essence a moment method, where only a single basis

function is used to approximate each of the charge and

current distributions. The anticipated success of our ap-

proach lies in the fact that p(o)(y) and .lj”)(y) provide

greater accuracy than any of the single basis functions

such as are used in other moment-method approaches

(e.g., [4] and [5]). We can therefore compute the dispersion

equation more efficiently because fewer basis functions

are needed.

We might also have chosen to follow one of the varia-

tional approaches available in the literature. Rather sim-

ple stationary formulas for L$ and C, can be found

[11]-[14], but for nonzero frequency, the stationary func-

tional are more complicated, as can be seen in [2],

[14]-[16]. Some simplification occurs if transverse currents

on the strips are assumed to be negligible, A dispersion

relation, also in the form of (16)–(1 8), can be obtained

from the variational expression given in [16], although

different expressions for L~(a) and 1/ CJa) are obtained.

However, it can be shown that these two equations differ

only in terms which would be absent if transverse currents

had been neglected. Numerical results from both methods

were compared using l/t =2.34, kot = 0.107, and ~= 9.9

and found to give C,df= a2 as 8.339 and 8.337, respectively.

This might be expected, since the “moment method”

leading to (16)–(18) can also be shown to possess a

variational property [18]. Omitting the contribution due to

transverse currents (i.e., the difference in functional form

between p(o)(y) and Jjo)(y)) also yielded 8.337, apparently

indicating that this difference has little effect on results.

However, as may be concluded from the comparisons in

[2], the difference between p(o)(y) and .ljo)(y) and the

corresponding expressions for the narrow strip can be

quite important, especially for 1/t >1.

III. NWERICAL RESULTS AND DISCUSSION

A. Narrow Strzjs

It can be shown, using the limiting form of the

Legendre functions for argument equal to unity [19] and

the limiting forms for the elliptic integrals as ke and

km~O, that the dispersion equations derived here pass

over into those obtained for narrow strips [1], but the

present theory is valid for strips of arbitrary width. Re-

sults have been computed for narrow strips and compare

.~
o 2 4 6 8 10

f, GHz

Fig. 2. Effective dielectric constant +== az for open microstrip: t =S
0.64 ~ -1.5 rnrw +. 9.9 as computed by Jansen [5] snd by present
method.

10

[

---- KOWALSKI AND PREGLA
— PRESENT METHOO

9 –

●reff *

7

t

.o~

f, GHz

Fig. 3. Effective dielectric coustant q== a2 for opeu microstrip: t=
1.27 mnu 1= 1.905 mm, %-9.7 as computed by Kowakki and Pregla
[3] and by the present method.

quite well with those of [1], although of course the latter

does not require evaluations of Legendre functions and is

altogether more appropriate to the task.

B. Wider Strtps

Of the results available for wider strips, those of [5]

seem to have the greatest likelihood of accuracy. As

argued in [2], the moment method used in [5] used a set of

basis functions to describe the currents which possess the

proper singular behavior at the edges of the strip, and a

sufficient number of these is employed to assure an ac-

curate result. Fig. 2 gives a comparison between the

results for the widest strip from [5] and from the present

method (the various dispersion relations mentioned at the

end of the previous section gave indistinguishable results

when displayed graphically-this was true for all results

presented here). The agreement is nearly exact: the dis-

crepancy is at least as much as the error involved in
reading data from the graph in [5]. Kowalski and Pregla

[3] have used a variational approach, but use only the

current distribution appropriate to a narrow strip as a trial

function. While, as seen in [2], this gives good results even

for strips as wide as the substrate thickness, a comparison

of their results for a wider strip with those of our method

(Fig. 3) shows that the narrow strip current distribution is
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Fig. 4. Effective dielectric constant q.,= a2 for open microstrip: t=
1.27 mm, q= 10.2; as computed by /iorobets et al. [4] snd the pres-
ent method.
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Fig. 5. Effedive dielectric constant qd = az for open microstrip: t=
1.27 mm, q= 10; ss wmputed by Nekiov et al. [9] and the present
method.

no longer adequate, although the same general trend for

the effective dielectric constant is predicted.

In [4], results for very wide strips are computed by what

is also (in essence) a moment-method technique, but using

a constant distribution of the current on the strip. Com-

paring results with those of our method in Fig. 4, we see

that for 1/t =2, their method seems to predict a reason-

able value for a2 in the static limit, but dispersion effects

are considerably underestimated. For a very wide strip

with l/t =5, no consistent pattern of error seems to be

present. A possible explanation of this is that in both
methods, Sommerfeld integrals like (13.24) -(B.26) must be

evaluated with rapidly oscillating integrands (the conical

functions oscillate more rapidly with ~ as the argument is

increased); a similar rapid oscillation occurs in [4] due to

trigonometric functions. In support of our result for the

static limit, we can offer agreement with the graphically

displayed results of wheeler [20] and many others who

have studied this case, at least to within the readability of

the graphs used for comparison.

Displayed in Fig. 5 are the resuhs of Nefedov et al. [9],

who apply a Wiener–Hopf technique appropriate to very

wide strips and rather high frequencies. It can be seen that

in both instances good agreement with our result is ob-

tained at frequencies for which < kol >0.5. The agree-

ment with [9] is particularly gratifying since it indicates

that the entire range of frequencies can be covered with

the present method (for lower frequency) and the

Wiener–Hopf approach (for higher frequency), with a

considerable region of overlap where both are accurate.

We should note that the current and charge distribu-

tions themelves, not just the differences between them,

influence the character of the dispersion curves, As seen

@ [1], for example, the dispersion of a narrow strip (for

which these distributions have the same form) is actually

more pronounced, in general than that of the wide strips

presented here,

IV. CONCLUSION

It has been found that accurate results for the disper-

sion of open microstrip of arbitrary width can be obtained
using only a single basis function each for the charge and
current distributions on the strip. Computing times can be

considerably shortened compared to moment-method ap-

proaches requiring larger numbers of basis functions to

represent these quantities. A smooth transition has been

observed between this, low-frequency theory, and the

higher frequency (Wiener-Hopf) approaches existing in

the literature.

APPENDIX A

In this Appendix, we quote without derivation the

closed-form expressions for L. and C, obtained in [10]:

1 1 K(k;) tz
—=
c.

[1

—-—in 1+~ (Al)
2(5. +1) K(kJ 4m;12 aetz

K(k~) tz
La=

H

—hl l+<
4~(k~) – 47r12

(A.2)
amt2 “

Here K(k) is the complete elliptic integral of the first kind,

the moduli k, and km are defined in (B.2 1), while the

constants a= and am are given by

(6,+1)/6;

a.= - Q(-~c)+k[T~,/2(~,+ 1)1 (A.3)

2

an= ln(4/7r)
E8,2794 (AA)

where

Q =(6, – 1)/(6,+1)

and

()Q(x)= ~x“ln ~ . (A.5)
~=1

AppE~Ix B

In this Appendix, we carry out the steps leading to the

dispersion relation (16). Substituting (15) into (1) and (4),
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we have

Po(a)~~lG,(Y ‘Y’)P(0)(.Y’)@’ = cosh~ koy

(B.1)

Jo(a)~’ GJy –y’)J~O)(y’)q’y’
-I

[
= (XC. cosh= koy + pi)(a)

.~’ M(rm”ww]. (B.2)–1
Multiplying (B. 1) by p(o)(y), and (B.2) by Jjo)(y), and

integrating, we obtain

PO(a)~~lj~lG.(Y ‘Y’)P(0)(Y’)P(O)(Y) @Y’@

=/jzp(o)(y)cosh- kOy@ (B.3)
-I

Jo(a) ~_’j:lGm(y ‘y ’)~:o)(y’)~$o)( y)dy’dy

= aco
[J

‘ .IJO)(y)coshl/~” koyd +PO(a)

“~’ j’M(Y-Y’)P(0)(Y’)J40)(Y)C&’@]. (B.4)
–1 -1

G(o)+ AG= and G~ = G~O)+AG~,Now, by writing G.= .

where the static kernels G~O)and G~O)are given in (8) and

(9), we can make use of (12), (13) to simplify part of the

left sides of (B.3) and (B.4), recalling that we have set C, V

and 1 equal to unity in those equations:

Po(a){ ~ +~~,~~~G.(Y-Y’)P(0)(Y’)P(O)(Y)dY’@}
s

‘~:p(o)(,)cod= koy.$ (B.5)

JO(a) (2~&+ ~~l~~~GJY -.Y’)JjO)(Y’)J~O)(Y)@’@)

= aco
[J

1@)(y)coshti~ key@
–[

1
+ ~o(a)J:/J:zA4(y – y’)p@)(y’)J$o)( y)dy’dy .

(B.6)

These equations determine po(a) and Jo(a) in terms of the

static strip parameters and some integral terms, of which

the latter determine the frequency dependence. Since (7)

and (15) give us

a.lo(a) = c@o(a) (B.7)

we obtain an equation to solve for a.

The integrals in (B.5) and (B.6) can be simplified by
introducing the Fourier transform pair (for functions

which vanish for Iy I > 1)

$(y)= (m exp(- ikJY)Jl)d~l

263

For even functions, the exponential in (B.8) can be

replaced by cos(k~y). Since the static distributions are

even, we get

~’p(0)(y)cosh~koyt& =fi(O)(-i~~ )
–1

(B.9)

~~~(~)cosh-kOy@=~$O)(-iti~ )

(B.10)

while the double integrals in (B,5) and (B.6) can be

reduced by using the Fourier integral representations for

AC,, AG~, and M (cf. (2), (5), (6), (8) and (9)):

4n_ w

J[

untanh u. T tanhAT
=— —

k; O tio(tr~o + Z4ntd UnT) A(c,+wIMT) 1

. [@)(A)]’dA (B.11)

“./
w [j5@)(A)][.p(A)]dA

O (~,uo + u.tifiu. T)( /.l#o + uncothu~ T)ZJo “

(B.12)

(B.13)

Inserting (RI 1)-(B.13) into (B.5)-(B.7), and taking (B.9)

and (B. 10) into account yields the eigenvalue equation for

a:

[

+ G(’)(a)+ fi(o)(–~- )a’+- . M(’)(a)
s j$”)( – i~~ ) I

Although no exact, closed-form expressions for ~(o)(y)

and .lj”)(y) exist, the following simple expressions for the

case ~= 1 have been obtained in [10]:

const
P(o)(Y)= , Iyl<l

cosh2(wl/2h) – cosh2(W/2h)

(B.15)

J\O)(y)N
const

Iy[ <1.
cosh2(d/4t) – cosh2(W/4t) ‘

(B.16)

Here h = (q + l)t/ e,, which reduces approximately to t

when c,>> 1. Expressions (B. 15) and (B. 16) have been

found to be accurate to within a few percent for most
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parameter values, and have never been observed to de-

viate more than about 10 percent for any situation. These

forms are particularly suited to our present purpose, be-

cause their Fourier transform can be expressed in terms of

a particular form of the Legendre function known as a

conical function [19, p. 14]:

P-,,2+,T(.C+)=+--; coskJy @

cosh2(d/2h) – cosh2(wy/2h)

(B.17)

where IT= Ahoh/ r. Efficient numerical procedures exist for

computing this function: a uniform asymptotic expansion

for large 7[19, p. 23], [21, p. 466], [22]; and for small ~

either a power series whose coefficients are tabulated as

functions of the argument z = cosh(rl/h) [19] or a method

similar to the arithmetic-geometric mean algorithm for

evaluating elliptic integrals [23].

By (12) and (13) (since C, V and 1 are both unity), we

see that @t”J(0)= ~’0)(0) = ko/2n, which suffices to de-

termine the constants in (B. 15) and (B. 16), so that by

(B.17):

k. P_ ,,,+i,e(coshnl/h)
@(o)(A)= ~ ~ (B.18)

_ ~,2(cosh~l/h)

k. ~–1/2+i~m (coshrl/2t)
~~o)(~~ = ~ P_ ,,2(coshT~/2t) (B.19)

where T== Akoh/~ = AT(c, + 1)/mq and Tm = 2AT~w. By

[19] it is possible to express P_ 1,2 in terms of elliptic

integrals [17]:

() %d
P.1,2 cosh~ = ; k;K(kJ

()
P_ 1,2 cosh~

2t
= + timK(km) (B.20)

where the moduli are given by

ke = tanh~ %=(1 -%)”2 (B.21)

Tl

‘“= ‘a%t
k~= (1 – k;)1j2e

Inserting (B. 18) and (B. 19) into (B. 14), we arrive at disper-

sion relation ( 16)–( 18), wherein

P - 1/2(cos~ ~lizt) P,= – l/2(COsb~llW
A’@(a)

+ P_ ~,2(coshnl/h) P,m- ~,2(coshml/2t)

(B.22)

[

p- l/2(cos~~l/20 p,,- l/2(cosh ~~/h) _ ~

‘d(a) = ~’ p_ ,,2(cosh~l/h) PVm- ~,2(coshd/2f) 1
P_ 1,2(coshrrl/2t) P,e- 1,2(coshd/h)

‘P
G$)(a)

- l/Acosh~l/h) P,m- liAcosh~~/2t)

@.23)

where

and the Sommerfeld integrals are

[

untanl UnT tanhAT— 1@2)(~)=~~m~o(c,uo+u.tanhu~ T)
A(6, + tanhNT)

“[P _ ,,2+iTm(coshT1/2t) 2

1

d~ @.25)
P_ ,,2(coshzd/2t)

P,% – 1@ya) . ~

“J[
1

O* (CrUo+ zintanhunT)( IJrUo+ uncothunT)uo 1

“[

P_1,2+jT=(coshr//h) P_ ~,2+iTm(coshml/2t) d~

1[p- ljz(coshml/h) “ 1
P- llz(cosh~I/2t) “

(B.26)

Equations (B.24)–(B.26) differ from the corresponding

functions in [1] only by an unimportant constant and the

presence of fi(O@) and ~j”)(~) in the integrals.
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Short Papers

An Expansion for the Fringing Capacitance

HENRY J. RIBLET, FELLOW, rmw

A&ract-l%e fimt twelve terms hi an expansion of the %pproxfrnate

frfnghrg capacitance” in powem of exp (– m/b) are given expfidtly as

fanetfone of Z/b, Comparison with exact values show agreement withfn
0.06 peroent for s/b> 0.2 and t/b< 0.5. In the extreme ease cmssider@
s/b=O.l and t/b=O.5, the error fs leas than 2.3 percent.

INTRODUCTION

The ‘{approximate fringing capacitance” CjO, as defined by

Cohn [1] and Getsinger [2] is useful in a number of ways in the

approximation of the capacitance of certain rectangular coaxial

structures. Explicit formulas for it have been given by Cockroft

[3], Getsiuger [2], and Riblet [4]. These formulas express CA in

terms of two independent real parameters a and k. The normal-

ized geometric parameters, t/b and s/b of Fig. 1 are also given

in terms of these parameters, but, before C;O can be found for a

given geometry, these equations must be inverted in some way

and a and k determined for the given values of t/b and s/b.

Heretofore this determination has required some form of

graphical or numerical trial and error process. Recently, Riblet

[5], however, has shown how for large values of s/b, these

equations can be inverted. In this note these values for a and k
are substituted directly in the formula for CjO and an exp~sion

obtained for C~Oin powers of exp ( – m/b), whose coefficients

Manuscript received June 6, 1979; revised October 3, 1979.
The author is with Microwave Development Labs., Inc., Needham, MA

02194.

Fig. 1. Fringing capacitance cross section.

are given functions of t/b, which has useful accuracy for s/b as

small as 0.1.

T= PROBLEM

It is not difficult, following Bowman [6] to express the quanti-

ties b,s, and t, of Fig. 1, except for a scale factor, in terms of two

independent reaf parameters a and k, where k is the modulus of

the Jacobi elliptic functions involved. It is no restriction to

assume that O<k< 1 and O<a<K. Then

b=2K
(

snadna
—–Z(a))–*+n-

cna
(1)

{

snadna
s=2K — - Z(a))

cna
(2)

t=2K’
{

snadna
—–Z(a))–~.

cna
(3)

The approximate odd-mode fringing capacitance, CjO for this

geometry is given in terms of the same parameters a and k by
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